Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: A review.

Submitted by marcel.lubbers on
Author(s)
Franke A.C., van den Brand G.J., Vanlauwe B. & Giller K.E.
Year
2018
Keywords
Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: A review.
Publisher
Agriculture, Ecosystems and Environment, 261, 172-185.
Country
Sub-Saharan Africa

We conducted a systematic review of literature on the residual effects of grain legumes in cereal-based systems of sub-Saharan Africa (SSA) to quantify the magnitude and variability of rotational effects, to explore the importance of environmental and management factors in determining variability and to evaluate the evidence of the different mechanisms that explain rotational effects. We retrieved 44 unique publications providing 199 observations comparing continuous cereal performance with that of a grain legume-cereal rotation. The overall mean yield increase of 0.49 t grain ha−1, equal to an increase of 41% of the continuous cereal yield, is highly significant, but the variability in residual effects is large. Effects were more pronounced in southern Africa, the highlands of East Africa and the Guinea savannah, and less in the humid forest/derived savannah of West Africa and the Sudano-Sahelian zone. Maize showed stronger yield responses after a legume than millet and sorghum. Agro-ecological zone and cereal type were however confounded. All grain legume types significantly improved cereal yields, with stronger residual effects observed after soybean and groundnut than after cowpea. Fertiliser N application to cereals reduces the residual effects of legumes, but the response at 60–120 kg N ha−1 still equalled 0.32 t ha−1 or 59% of the response when no N is applied. The sustained benefits with large N applications indicate the importance of non-N effects. While mechanisms for improved soil P availability after grain legumes have been studied in some detail, it remains uncertain how important these are in farmers’ fields.