Food-based dietary guidelines (FBDGs) provide guidance to policy makers, the private sector and consumers to redesign food systems and to improve diets of vulnerable populations. As appropriate FBDGs are based on the actual dietary patterns and their costs, it is assumed that the recommended foods are available, affordable and acceptable for the population under study.

We conducted a systematic review of literature on the residual effects of grain legumes in cereal-based systems of sub-Saharan Africa (SSA) to quantify the magnitude and variability of rotational effects, to explore the importance of environmental and management factors in determining variability and to evaluate the evidence of the different mechanisms that explain rotational effects. We retrieved 44 unique publications providing 199 observations comparing continuous cereal performance with that of a grain legume-cereal rotation.

The pursuit of global food security and agricultural sustainability, the dual aim of the second sustainable development goal (SDG-2), requires urgent and concerted action from developing and developed countries. This, in turn, depends on clear and universally applicable targets and indicators which are partially lacking. The novel and complex nature of the SDGs poses further challenges to their implementation on the ground, especially in the face of interlinkages across SDG objectives and scales.

Continuous cereal-based cropping has led to a rapid decline in soil fertility in the Guinea savanna agro-ecological zone of northern Ghana with corresponding low crop yields. We evaluated the effects of cropping system and soil fertility status on grain yields and N2-fixation by grain legumes and net N contribution to soil fertility improvement in contrasting sites in this agro-ecological zone.

Soil nutrient constraints coupled with erratic rainfall have led to poor crop yields and occasionally to crop failure in sole cropping in the Guinea savanna of West Africa. We explored different maize-grain legume diversification and intensification options that can contribute to mitigating risks of crop failure, increase crop productivity under different soil fertility levels, while improving soil fertility due to biological N2-fixation by the legume.

Indicators for sustainability of agricultural systems are a topical and widely debated issue. The Sustainable Development Goals (SDGs) have 230 indicators for sustainability, of which only 21 can be directly linked to agriculture (United Nations – Economic and Social Council 2016). The indicator ‘proportion of agricultural area under productive and sustainable agriculture’ (SDG 2, indicator 2.4.1, United Nations – Economic and Social Council 2016), directly raises the question as to the meaning of ‘productive and sustainable agriculture’.

Although rainfed cropping in semi-arid areas is risky due to frequent droughts and dry spells, planting early with the first rains is often expected to result in yield benefits. We hypothesised that planting early leads to yield benefits if the planting coincides with a mineral N flush at the start of the season but leads to crop failure if there is a false start to the cropping season.

While home garden systems are acknowledged for their capacity of supporting a very dense population, the productivity of these systems and their contribution to food security and dietary diversity are poorly quantified. Although several articles document the decrease in species richness in home gardens due to processes of modernization, relatively little attention has been given to how the change in diversity impacted productivity.

The continuous rise in the global demand for palm oil has resulted in large-scale expansion of industrial oil palm plantations—largely at the expense of primary and secondary forests. The potentially negative environmental impacts of these conversions have given rise to closer scrutiny. However, empirical data on the effects of conversion of forests to industrial oil palm plantations on soil organic carbon (SOC) stocks is scarce and patchy.